

YEAR 12 MATHEMATICS SPECIALIST **SEMESTER ONE 2017 TEST 2: Functions**

	By daring & by doing	¥			
			Name:		
Monday 3 rd April					
Time: 50 minutes			Mark	/40 =	%
•	Answer all questions neatly in the You are permitted to use the Formation You are permitted one A4 page (. /- 0	
Ca	alculator free section	Sugg	ested time: 30 min	utes	/26
1.	9 [10 marks]				
	Two functions f and g are defined by $f(x) = \sqrt{x+4}$ and $g(x) = e^x - 1$				
	a) Express $g \circ f(x)$ in terms of x	e /244	1		
	b) What is the natural domain of y	$g = g \circ f(x)$			[1]
	R, 2+4	70	→ 717-4		,
	c) What is the range (co-domain) of	of $y = g \circ f(x)$			[2]
	R, 4 %	0			[2]
	A third function $y = h(x)$ is such that $f(h(x)) = \sqrt{x^2 - 4}$.				[2]
	d) Express $h(x)$ in terms of x .				
	R(n) = Z A 8				[1]
	e) Clearly define $y = f^{-1}(x)$ and specify both its domain and range.				[-]
	x = Jy+4				
	=> y= n2-4	D: 1	2, 270		[4]
		R: F	2, 47-4		3

2. [7 marks]

a) Solve the inequality $|2-x| \ge 5$

or solve
$$|2-\pi|=5$$
 by squaring $(2-\pi)=25$

b) Calculate where the line y = |2x - 6| intersects y = |x + 2| + 1 and illustrate your solution on the axes provided.

$$2(11-3) = 71+2+1$$

3. [8 marks]

The function $f(x) = 4x - x^2$ is represented by the graph of y = f(x) shown on each set of axes provided.

a) Draw y = |f(x)|, $y = \frac{1}{f(x)}$ and y = f(|x|) on these separate diagrams:

The domain of $f(x) = 4x - x^2$ is restricted to $\{x : x \in \mathbb{R}, x \le k\}$ so that $y = f^{-1}(x)$ can be defined as a function.

b) Determine the largest possible value of k

c) Define $y = f^{-1}(x)$ and specify its domain and range.

Inverse his
$$y = -\sqrt{4-11} + 2$$
 for $x \le 4$ (domain) as rejd g^{-1} .

4. [7 marks]

The graph of y = f(x) for f(x) = a|x+b| + c has a y-intercept of (0, -1) and a maximum point at (3, 5), as shown.

Name: __

b) For which value(s) of d does |f(x)| = d have exactly four solutions?

[2]

to the axes

c) Add a graph of y = g(x) so that $\{x : x \in \mathbb{R} \text{ and } f(x) = g(x)\} = \{x : x \in \mathbb{R} \text{ and } -1 \le x \le 3\}$

$$y=2|n+1|-3$$
 is such a function $g(n)$. [2]

5. [7 marks]

This graph represents a function of the form $y = f(x) = \frac{ax^2}{(x+b)(x-c)} + d$

The asymptotes are as shown and the unmarked x intercept is $\left(\frac{4}{3},0\right)$.

(a) Determine the values of the constants a, b, c and d.

d=0.5 (y Value of TP)

[4]

(b) What is the range of y = f(x)?

76= 1.38

lon= 13.88

 $1. q_{x} = 12.5$ $1. n = \frac{25}{18}$